2 KINEMATICS

Figure 2.1 The motion of an American kestrel through the air can be described by the bird's displacement, speed, velocity, and acceleration. When it flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)

Learning Objectives
2.1. Displacement
2.2. Vectors, Scalars, and Coordinate Systems
2.3. Time, Velocity, and Speed
2.4. Acceleration
2.5. Motion Equations for Constant Acceleration in One Dimension
2.6. Problem-Solving Basics for One-Dimensional Kinematics
2.7. Falling Objects
2.8. Graphical Analysis of One-Dimensional Motion

Introduction to One-Dimensional Kinematics

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your veins. And even in inanimate objects, there is continuous motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle? But an understanding of motion is also key to understanding other concepts in physics. An understanding of acceleration, for example, is crucial to the study of force.
Our formal study of physics begins with kinematics which is defined as the study of motion without considering its causes. The word "kinematics" comes from a Greek term meaning motion and is related to other English words such as "cinema" (movies) and "kinesiology" (the study of human motion). In one-dimensional kinematics and Two-Dimensional Kinematics we will study only the motion of a football, for example, without worrying about what forces cause or change its motion. Such considerations come in other chapters. In this chapter, we examine the simplest type of motion-namely, motion along a straight line, or one-dimensional motion. In Two-Dimensional Kinematics, we apply concepts developed here to study motion along curved paths (two- and three-dimensional motion); for example, that of a car rounding a curve.

2.1 Displacement

Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position

In order to describe the motion of an object, you must first be able to describe its position-where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor's position could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a passenger moves toward the rear of an airplane), then the object's position changes. This change in position is known as displacement. The word "displacement" implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

$$
\begin{equation*}
\Delta x=x_{\mathrm{f}}-x_{0}, \tag{2.1}
\end{equation*}
$$

where Δx is displacement, x_{f} is the final position, and x_{0} is the initial position.

In this text the upper case Greek letter Δ (delta) always means "change in" whatever quantity follows it; thus, Δx means change in position. Always solve for displacement by subtracting initial position x_{0} from final position x_{f}.

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles, feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need to convert them into meters to complete the calculation.

Figure 2.3 A professor paces left and right while lecturing. Her position relative to Earth is given by x. The +2.0 m displacement of the professor relative to Earth is represented by an arrow pointing to the right.

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by x. The $-4.0-\mathrm{m}$ displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 2.3.

Note that displacement has a direction as well as a magnitude. The professor's displacement is 2.0 m to the right, and the airline passenger's displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are free to select positive as being any direction). The professor's initial position is $x_{0}=1.5 \mathrm{~m}$ and her final position is $x_{\mathrm{f}}=3.5 \mathrm{~m}$. Thus her displacement is

$$
\begin{equation*}
\Delta x=x_{\mathrm{f}}-x_{0}=3.5 \mathrm{~m}-1.5 \mathrm{~m}=+2.0 \mathrm{~m} . \tag{2.2}
\end{equation*}
$$

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger's initial position is $x_{0}=6.0 \mathrm{~m}$ and his final position is $x_{\mathrm{f}}=2.0 \mathrm{~m}$, so his displacement is

$$
\begin{equation*}
\Delta x=x_{\mathrm{f}}-x_{0}=2.0 \mathrm{~m}-6.0 \mathrm{~m}=-4.0 \mathrm{~m} . \tag{2.3}
\end{equation*}
$$

His displacement is negative because his motion is toward the rear of the plane, or in the negative x direction in our coordinate system.

Distance

Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of displacement between two positions. Note that the distance between two positions is not the same as the distance traveled between them. Distance traveled is the total length of the path traveled between two positions. Distance has no direction and, thus, no sign. For example, the distance the professor walks is 2.0 m . The distance the airplane passenger walks is 4.0 m .

Misconception Alert: Distance Traveled vs. Magnitude of Displacement

It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m , the magnitude of her displacement would be 2.0 m , but the distance she traveled would be 150 m . In kinematics we nearly always deal with displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled, however, is the total length of the path taken between the two marks.

Check Your Understanding

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she ride? (c) What is the magnitude of her displacement?

Solution

Figure 2.5
(a) The rider's displacement is $\Delta x=x_{\mathrm{f}}-x_{0}=-1 \mathrm{~km}$. (The displacement is negative because we take east to be positive and west to be negative.)
(b) The distance traveled is $3 \mathrm{~km}+2 \mathrm{~km}=5 \mathrm{~km}$.
(c) The magnitude of the displacement is 1 km .

2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases, the x-coordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude, distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of $90 \mathrm{~km} / \mathrm{h}$ east and a force of 500 newtons straight down.
The direction of a vector in one-dimensional motion is given simply by a plus $(+)$ or minus $(-)$ sign. Vectors are represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector's magnitude (e.g., the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.
Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a magnitude, but no direction. For example, a $20^{\circ} \mathrm{C}$ temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a $90 \mathrm{~km} / \mathrm{h}$ speed limit, a person's 1.8 m height, and a distance of 2.0 m are all scalars-quantities with no specified direction. Note, however, that a scalar can be negative, such as a $-20^{\circ} \mathrm{C}$ temperature. In this case, the minus sign indicates a point on a scale rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion

In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in Figure 2.6, it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is useful to define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive direction and start solving a problem, you cannot change it.

Figure 2.7 It is usually convenient to consider motion upward or to the right as positive $(+)$ and motion downward or to the left as negative (-).

Check Your Understanding

A person's speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a scalar or a vector quantity? Explain.

Solution

Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a vector quantity, it would change as direction changes (even if its magnitude remained constant).

2.3 Time, Velocity, and Speed

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)
There is more to motion than distance and displacement. Questions such as, "How long does a foot race take?" and "What was the runner's speed?" cannot be answered without an understanding of other concepts. In this section we add definitions of time, velocity, and speed to expand our description of motion.

Time

As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple- time is change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We might, for example, observe that a certain pendulum makes one full swing every 0.75 s . We could then use the pendulum to measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed time would be 50 min. Elapsed time $\boldsymbol{\Delta} \boldsymbol{t}$ is the difference between the ending time and beginning time,

$$
\begin{equation*}
\Delta t=t_{\mathrm{f}}-t_{0} \tag{2.4}
\end{equation*}
$$

where Δt is the change in time or elapsed time, t_{f} is the time at the end of the motion, and t_{0} is the time at the beginning of the motion. (As usual, the delta symbol, Δ, means the change in the quantity that follows it.)

Life is simpler if the beginning time t_{0} is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would simply read zero at the start of the lecture and 50 min at the end. If $t_{0}=0$, then $\Delta t=t_{\mathrm{f}} \equiv t$.

In this text, for simplicity's sake,

- motion starts at time equal to zero $\left(t_{0}=0\right)$
- the symbol t is used for elapsed time unless otherwise specified $\left(\Delta t=t_{\mathrm{f}} \equiv t\right)$

Velocity

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or kilometers per hour.

Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{\mathrm{f}}-x_{0}}{t_{\mathrm{f}}-t_{0}}, \tag{2.5}
\end{equation*}
$$

where \bar{v} is the average (indicated by the bar over the v) velocity, Δx is the change in position (or displacement), and x_{f} and x_{0} are the final and beginning positions at times t_{f} and t_{0}, respectively. If the starting time t_{0} is taken to be zero, then the average velocity is simply

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{t} \tag{2.6}
\end{equation*}
$$

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction. The SI unit for velocity is meters per second or m / s, but many other units, such as km / h, mi/h (also written as mph), and cm / s, are in common use. Suppose, for example, an airplane passenger took 5 seconds to move -4 m (the negative sign indicates that displacement is toward the back of the plane). His average velocity would be

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{t}=\frac{-4 \mathrm{~m}}{5 \mathrm{~s}}=-0.8 \mathrm{~m} / \mathrm{s} \tag{2.7}
\end{equation*}
$$

The minus sign indicates the average velocity is also toward the rear of the plane.
The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point, however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time intervals.

Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.
The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the instantaneous velocity or the velocity at a specific instant. A car's speedometer, for example, shows the magnitude (but not the direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity v is the average velocity at a specific instant in time (or over an infinitesimally small time interval).
Mathematically, finding instantaneous velocity, v, at a precise instant t can involve taking a limit, a calculus operation beyond the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without calculus.

Speed

In everyday language, most people use the terms "speed" and "velocity" interchangeably. In physics, however, they do not have the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar. Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between instantaneous speed and average speed.
Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant had an instantaneous velocity of $-3.0 \mathrm{~m} / \mathrm{s}$ (the minus meaning toward the rear of the plane). At that same time his instantaneous speed was $3.0 \mathrm{~m} / \mathrm{s}$. Or suppose that at
one time during a shopping trip your instantaneous velocity is $40 \mathrm{~km} / \mathrm{h}$ due north. Your instantaneous speed at that instant would be $40 \mathrm{~km} / \mathrm{h}$-the same magnitude but without a direction. Average speed, however, is very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car's odometer shows the total distance traveled was 6 km , then your average speed was $12 \mathrm{~km} / \mathrm{h}$. Your average velocity, however, was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero for a round trip.) Thus average speed is not simply the magnitude of average velocity.

Home
Figure 2.10 During a 30 -minute round trip to the store, the total distance traveled is 6 km . The average speed is $12 \mathrm{~km} / \mathrm{h}$. The displacement for the round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 2.11. (Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which is unrealistic given that we'll probably stop at the store. But for simplicity's sake, we will model it with no stops or changes in speed. We are also assuming that the route between the store and the house is a perfectly straight line.)

Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Making Connections: Take-Home Investigation-Getting a Sense of Speed

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour. But what are these in meters per second? What do we mean when we say that something is moving at $10 \mathrm{~m} / \mathrm{s}$? To get a better sense of what these values really mean, do some observations and calculations on your own:

- calculate typical car speeds in meters per second
- estimate jogging and walking speed by timing yourself; convert the measurements into both m / s and mi / h
- determine the speed of an ant, snail, or falling leaf

Check Your Understanding

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in m / s ?

Solution

(a) The average velocity of the train is zero because $x_{\mathrm{f}}=x_{0}$; the train ends up at the same place it starts.
(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a total distance of 80 miles.

$$
\begin{gather*}
\frac{\text { distance }}{\text { time }}=\frac{80 \text { miles }}{105 \text { minutes }} \tag{2.8}\\
\frac{80 \text { miles }}{105 \text { minutes }} \times \frac{5280 \text { feet }}{1 \text { mile }} \times \frac{1 \text { meter }}{3.28 \text { feet }} \times \frac{1 \text { minute }}{60 \text { seconds }}=20 \mathrm{~m} / \mathrm{s} \tag{2.9}
\end{gather*}
$$

2.4 Acceleration

Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit: Steve Conry, Flickr)
In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with these notions, but more inclusive.

Average Acceleration

Average Acceleration is the rate at which velocity changes,

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}} \tag{2.10}
\end{equation*}
$$

where \bar{a} is average acceleration, v is velocity, and t is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in m / s divided by time in s , the Sl units for acceleration are $\mathrm{m} / \mathrm{s}^{2}$, meters per second squared or meters per second per second, which literally means by how many meters per second the velocity changes every second.
Recall that velocity is a vector-it has both magnitude and direction. This means that a change in velocity can be a change in magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Δv. Since velocity is a vector, it can change either in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion. When an object slows down, its acceleration is opposite to the direction of its motion. This is known as deceleration.

Figure 2.13 A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its direction of motion. (credit: Yusuke Kawasaki, Flickr)

Misconception Alert: Deceleration vs. Negative Acceleration

Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always reduces speed. Negative acceleration, however, is acceleration in the negative direction in the chosen coordinate system. Negative acceleration may or may not be deceleration, and deceleration may or may not be considered negative acceleration. For example, consider Figure 2.14.

Figure 2.14 (a) This car is speeding up as it moves toward the right. It therefore has positive acceleration in our coordinate system. (b) This car is slowing down as it moves toward the right. Therefore, it has negative acceleration in our coordinate system, because its acceleration is toward the left. The car is also decelerating: the direction of its acceleration is opposite to its direction of motion. (c) This car is moving toward the left, but slowing down over time. Therefore, its acceleration is positive in our coordinate system because it is toward the right. However, the car is decelerating because its acceleration is opposite to its motion. (d) This car is speeding up as it moves toward the left. It has negative acceleration because it is accelerating toward the left. However, because its acceleration is in the same direction as its motion, it is speeding up (not decelerating).

Example 2.1 Calculating Acceleration: A Racehorse Leaves the Gate
A racehorse coming out of the gate accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ due west in 1.80 s . What is its average acceleration?

Figure 2.15 (credit: Jon Sullivan, PD Photo.org)

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

Figure 2.16

We can solve this problem by identifying Δv and Δt from the given information and then calculating the average acceleration directly from the equation $\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}$.

Solution

1. Identify the knowns. $v_{0}=0, v_{\mathrm{f}}=-15.0 \mathrm{~m} / \mathrm{s}$ (the negative sign indicates direction toward the west), $\Delta t=1.80 \mathrm{~s}$.
2. Find the change in velocity. Since the horse is going from zero to $-15.0 \mathrm{~m} / \mathrm{s}$, its change in velocity equals its final velocity:
$\Delta v=v_{\mathrm{f}}=-15.0 \mathrm{~m} / \mathrm{s}$.
3. Plug in the known values (Δv and Δt) and solve for the unknown \bar{a}.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{-15.0 \mathrm{~m} / \mathrm{s}}{1.80 \mathrm{~s}}=-8.33 \mathrm{~m} / \mathrm{s}^{2} . \tag{2.11}
\end{equation*}
$$

Discussion

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of $8.33 \mathrm{~m} / \mathrm{s}^{2}$ due west means that the horse increases its velocity by $8.33 \mathrm{~m} / \mathrm{s}$ due west each second, that is, 8.33 meters per second per second, which we write as $8.33 \mathrm{~m} / \mathrm{s}^{2}$. This is truly an average acceleration, because the ride is not smooth. We shall see later that an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration a, or the acceleration at a specific instant in time, is obtained by the same process as discussed for instantaneous velocity in Time, Velocity, and Speed-that is, by considering an infinitesimally small interval of time. How do we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is representative of the motion. Figure 2.17 shows graphs of instantaneous acceleration versus time for two very different motions. In Figure 2.17(a), the acceleration varies slightly and the average over the entire interval is nearly the same as the instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the average (in this case about $1.8 \mathrm{~m} / \mathrm{s}^{2}$). In Figure 2.17 (b), the acceleration varies drastically over time. In such situations it
is best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of $+3.0 \mathrm{~m} / \mathrm{s}^{2}$ and $-2.0 \mathrm{~m} / \mathrm{s}^{2}$, respectively.

Figure 2.17 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any given time. (b) Here the acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as it bumps along. It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in Figure 2.18. In (a) the shuttle moves to the right, and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the reasoning that goes into solving problems.

Figure 2.18 One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6, and Example 2.7. Here we have chosen the X-axis so that + means to the right and - means to the left for displacements, velocities, and accelerations. (a) The subway train moves to the right from x_{0} to
x_{f}. Its displacement Δx is +2.0 km . (b) The train moves to the left from $x_{0}^{\prime}{ }^{\text {to }} x_{\mathrm{f}}^{\prime}$. Its displacement Δx^{\prime} is -1.5 km . (Note that the prime symbol (') is used simply to distinguish between displacement in the two different situations. The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)

Example 2.2 Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure 2.18?

Strategy

A drawing with a coordinate system is already provided, so we don't need to make a sketch, but we should analyze it to make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use the equation $\Delta x=x_{\mathrm{f}}-x_{0}$. This is straightforward since the initial and final positions are given.

Solution

1. Identify the knowns. In the figure we see that $x_{\mathrm{f}}=6.70 \mathrm{~km}$ and $x_{0}=4.70 \mathrm{~km}$ for part (a), and $x^{\prime}{ }_{\mathrm{f}}=3.75 \mathrm{~km}$ and $x^{\prime}{ }_{0}=5.25 \mathrm{~km}$ for part (b).
2. Solve for displacement in part (a).

$$
\begin{equation*}
\Delta x=x_{\mathrm{f}}-x_{0}=6.70 \mathrm{~km}-4.70 \mathrm{~km}=+2.00 \mathrm{~km} \tag{2.12}
\end{equation*}
$$

3. Solve for displacement in part (b).

$$
\begin{equation*}
\Delta x^{\prime}=x_{\mathrm{f}}^{\prime}-x_{0}^{\prime}{ }_{0}=3.75 \mathrm{~km}-5.25 \mathrm{~km}=-1.50 \mathrm{~km} \tag{2.13}
\end{equation*}
$$

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to the left and thus has a negative sign.

Example 2.3 Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.18?

Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in Example 2.2. Distance traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of the subway train shown in Figure 2.18, the distance traveled is the same as the distance between the initial and final positions of the train.

Solution

1. The displacement for part (a) was +2.00 km . Therefore, the distance between the initial and final positions was 2.00 km , and the distance traveled was 2.00 km .
2. The displacement for part (b) was -1.5 km . Therefore, the distance between the initial and final positions was 1.50 km , and the distance traveled was 1.50 km .

Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

Example 2.4 Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in Figure 2.18(a) accelerates from rest to $30.0 \mathrm{~km} / \mathrm{h}$ in the first 20.0 s of its motion. What is its average acceleration during that time interval?

Strategy

It is worth it at this point to make a simple sketch:

Figure 2.19
This problem involves three steps. First we must determine the change in velocity, then we must determine the change in time, and finally we use these values to calculate the acceleration.

Solution

1. Identify the knowns. $v_{0}=0$ (the trains starts at rest), $v_{\mathrm{f}}=30.0 \mathrm{~km} / \mathrm{h}$, and $\Delta t=20.0 \mathrm{~s}$.
2. Calculate Δv. Since the train starts from rest, its change in velocity is $\Delta v=+30.0 \mathrm{~km} / \mathrm{h}$, where the plus sign means velocity to the right.
3. Plug in known values and solve for the unknown, \bar{a}.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{+30.0 \mathrm{~km} / \mathrm{h}}{20.0 \mathrm{~s}} \tag{2.14}
\end{equation*}
$$

4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of meters and seconds. (See Physical Quantities and Units for more guidance.)

$$
\begin{equation*}
\bar{a}=\left(\frac{+30 \mathrm{~km} / \mathrm{h}}{20.0 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=0.417 \mathrm{~m} / \mathrm{s}^{2} \tag{2.15}
\end{equation*}
$$

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with a velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

Example 2.5 Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in Figure 2.18(a) slows to a stop from a speed of $30.0 \mathrm{~km} / \mathrm{h}$ in 8.00 s . What is its average acceleration while stopping?

Strategy

Figure 2.20
In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous example, we must find the change in velocity and the change in time and then solve for acceleration.

Solution

1. Identify the knowns. $v_{0}=30.0 \mathrm{~km} / \mathrm{h}, v_{\mathrm{f}}=0 \mathrm{~km} / \mathrm{h}$ (the train is stopped, so its velocity is 0), and $\Delta t=8.00 \mathrm{~s}$.
2. Solve for the change in velocity, Δv.

$$
\begin{equation*}
\Delta v=v_{\mathrm{f}}-v_{0}=0-30.0 \mathrm{~km} / \mathrm{h}=-30.0 \mathrm{~km} / \mathrm{h} \tag{2.16}
\end{equation*}
$$

3. Plug in the knowns, Δv and Δt, and solve for \bar{a}.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{-30.0 \mathrm{~km} / \mathrm{h}}{8.00 \mathrm{~s}} \tag{2.17}
\end{equation*}
$$

4. Convert the units to meters and seconds.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\left(\frac{-30.0 \mathrm{~km} / \mathrm{h}}{8.00 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=-1.04 \mathrm{~m} / \mathrm{s}^{2} \tag{2.18}
\end{equation*}
$$

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction as the change in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction opposite to the velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure 2.21. (We have taken the velocity to remain constant from 20 to 40 s , after which the train decelerates.)

Figure 2.21 (a) Position of the train over time. Notice that the train's position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train's velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example 2.6 Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its trip?

Figure 2.22

Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative displacement.

Solution

1. Identify the knowns. $x^{\prime}{ }_{\mathrm{f}}=3.75 \mathrm{~km}, x^{\prime}{ }_{0}=5.25 \mathrm{~km}, \Delta t=5.00 \mathrm{~min}$.
2. Determine displacement, Δx^{\prime}. We found Δx^{\prime} to be -1.5 km in Example 2.2.

3 . Solve for average velocity.

$$
\begin{equation*}
\bar{v}=\frac{\Delta x^{\prime}}{\Delta t}=\frac{-1.50 \mathrm{~km}}{5.00 \mathrm{~min}} \tag{2.19}
\end{equation*}
$$

4. Convert units.

$$
\begin{equation*}
\bar{v}=\frac{\Delta x^{\prime}}{\Delta t}=\left(\frac{-1.50 \mathrm{~km}}{5.00 \mathrm{~min}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=-18.0 \mathrm{~km} / \mathrm{h} \tag{2.20}
\end{equation*}
$$

Discussion

The negative velocity indicates motion to the left.

Example 2.7 Calculating Deceleration: The Subway Train

Finally, suppose the train in Figure 2.22 slows to a stop from a velocity of $20.0 \mathrm{~km} / \mathrm{h}$ in 10.0 s . What is its average acceleration?

Strategy

Once again, let's draw a sketch:

Figure 2.23
As before, we must find the change in velocity and the change in time to calculate average acceleration.

Solution

1. Identify the knowns. $v_{0}=-20 \mathrm{~km} / \mathrm{h}, v_{\mathrm{f}}=0 \mathrm{~km} / \mathrm{h}, \Delta t=10.0 \mathrm{~s}$.
2. Calculate Δv. The change in velocity here is actually positive, since

$$
\begin{equation*}
\Delta v=v_{\mathrm{f}}-v_{0}=0-(-20 \mathrm{~km} / \mathrm{h})=+20 \mathrm{~km} / \mathrm{h} . \tag{2.21}
\end{equation*}
$$

3. Solve for \bar{a}.

$$
\begin{equation*}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{+20.0 \mathrm{~km} / \mathrm{h}}{10.0 \mathrm{~s}} \tag{2.22}
\end{equation*}
$$

4. Convert units.

$$
\begin{equation*}
\bar{a}=\left(\frac{+20.0 \mathrm{~km} / \mathrm{h}}{10.0 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=+0.556 \mathrm{~m} / \mathrm{s}^{2} \tag{2.23}
\end{equation*}
$$

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the same direction as the change in
velocity, which is positive here. As in Example 2.5, this acceleration can be called a deceleration since it is in the direction opposite to the velocity.

Sign and Direction

Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system, plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the train moving to the left in Figure 2.22 is sped up by an acceleration to the left. In that case, both v and a are negative. The plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the change in velocity, the object is speeding up. If acceleration has the opposite sign of the change in velocity, the object is slowing down.

Check Your Understanding

An airplane lands on a runway traveling east. Describe its acceleration.

Solution

If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also decelerating: its acceleration is opposite in direction to its velocity.

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

Figure 2.24 Moving Man (http://cnx.org/content/m42100/1.3/moving-man_en.jar)

2.5 Motion Equations for Constant Acceleration in One Dimension

Figure 2.25 Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England. (credit: Barry Skeates, Flickr)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration already covered.

Notation: t, x, v, a
First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is $\Delta t=t_{\mathrm{f}}-t_{0}$, taking $t_{0}=0$ means that $\Delta t=t_{\mathrm{f}}$, the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x_{0} is the initial position and v_{0} is the initial velocity. We put no subscripts on the final values. That is, t is the final time, x is the final position, and v is the final velocity. This gives a simpler expression for elapsed time—now, $\Delta t=t$. It also simplifies the expression for displacement, which is now $\Delta x=x-x_{0}$. Also, it simplifies the expression for change in velocity, which is now $\Delta v=v-v_{0}$. To summarize, using the simplified notation, with the initial time taken to be zero,

$$
\left.\begin{array}{rl}
\Delta t & =t \tag{2.24}\\
\Delta x & =x-x_{0} \\
\Delta v & =v-v_{0}
\end{array}\right\}
$$

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under consideration.
We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

$$
\begin{equation*}
\bar{a}=a=\text { constant }, \tag{2.25}
\end{equation*}
$$

so we use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations. Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant acceleration.

Solving for Displacement (Δx) and Final Position (x) from Average Velocity when Acceleration (a) is Constant

To get our first two new equations, we start with the definition of average velocity:

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t} . \tag{2.26}
\end{equation*}
$$

Substituting the simplified notation for Δx and Δt yields

$$
\begin{equation*}
\bar{v}=\frac{x-x_{0}}{t} \tag{2.27}
\end{equation*}
$$

Solving for x yields

$$
\begin{equation*}
x=x_{0}+\bar{v} t \tag{2.28}
\end{equation*}
$$

where the average velocity is

$$
\begin{equation*}
\bar{v}=\frac{v_{0}+v}{2}(\text { constant } a) . \tag{2.29}
\end{equation*}
$$

The equation $\bar{v}=\frac{v_{0}+v}{2}$ reflects the fact that, when acceleration is constant, v is just the simple average of the initial and final velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to $60 \mathrm{~km} / \mathrm{h}$, then your average velocity during this steady increase is $45 \mathrm{~km} / \mathrm{h}$. Using the equation $\bar{v}=\frac{v_{0}+v}{2}$ to check this, we see that

$$
\begin{equation*}
\bar{v}=\frac{v_{0}+v}{2}=\frac{30 \mathrm{~km} / \mathrm{h}+60 \mathrm{~km} / \mathrm{h}}{2}=45 \mathrm{~km} / \mathrm{h} \tag{2.30}
\end{equation*}
$$

which seems logical.

Example 2.8 Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of $4.00 \mathrm{~m} / \mathrm{s}$ for 2.00 min . What is his final position, taking his initial position to be zero?

Strategy

Draw a sketch.

Figure 2.26
The final position x is given by the equation

$$
\begin{equation*}
x=x_{0}+\bar{v} t \tag{2.31}
\end{equation*}
$$

To find x, we identify the values of x_{0}, \bar{v}, and t from the statement of the problem and substitute them into the equation.

Solution

1. Identify the knowns. $\bar{v}=4.00 \mathrm{~m} / \mathrm{s}, \Delta t=2.00 \mathrm{~min}$, and $x_{0}=0 \mathrm{~m}$.
2. Enter the known values into the equation.

$$
\begin{equation*}
x=x_{0}+\bar{v} t=0+(4.00 \mathrm{~m} / \mathrm{s})(120 \mathrm{~s})=480 \mathrm{~m} \tag{2.32}
\end{equation*}
$$

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation $x=x_{0}+\bar{v} t$ gives insight into the relationship between displacement, average velocity, and time. It shows, for example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on \bar{v} rather than on \bar{v} raised to some other power, such as \bar{v}^{2}. When graphed, linear functions look like straight lines with a constant slope.) On a car trip, for example, we will get twice as far in a given time if we average $90 \mathrm{~km} / \mathrm{h}$ than if we average $45 \mathrm{~km} / \mathrm{h}$.

Displacement vs. Velocity for a given time, t

Figure 2.27 There is a linear relationship between displacement and average velocity. For a given time t, an object moving twice as fast as another object will move twice as far as the other object.

Solving for Final Velocity

We can derive another useful equation by manipulating the definition of acceleration.

$$
\begin{equation*}
a=\frac{\Delta v}{\Delta t} \tag{2.33}
\end{equation*}
$$

Substituting the simplified notation for Δv and Δt gives us

$$
\begin{equation*}
a=\frac{v-v_{0}}{t}(\text { constant } a) \tag{2.34}
\end{equation*}
$$

Solving for v yields

$$
\begin{equation*}
v=v_{0}+a t(\text { constant } a) \tag{2.35}
\end{equation*}
$$

Example 2.9 Calculating Final Velocity: An Airplane Slowing Down after Landing

An airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$ and then decelerates at $1.50 \mathrm{~m} / \mathrm{s}^{2}$ for 40.0 s . What is its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is decelerating.

Figure 2.28

Solution

1. Identify the knowns. $\Delta v=70.0 \mathrm{~m} / \mathrm{s}, a=-1.50 \mathrm{~m} / \mathrm{s}^{2}, t=40.0 \mathrm{~s}$.
2. Identify the unknown. In this case, it is final velocity, v_{f}.
3. Determine which equation to use. We can calculate the final velocity using the equation $v=v_{0}+a t$.
4. Plug in the known values and solve.

$$
\begin{equation*}
v=v_{0}+a t=70.0 \mathrm{~m} / \mathrm{s}+\left(-1.50 \mathrm{~m} / \mathrm{s}^{2}\right)(40.0 \mathrm{~s})=10.0 \mathrm{~m} / \mathrm{s} \tag{2.36}
\end{equation*}
$$

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines, reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by a negative final velocity, which is not the case here.

$t_{0}=0$
$v_{0}=70.0 \mathrm{~m} / \mathrm{s}$
$a=-1.5 \mathrm{~m} / \mathrm{s}^{2}$

$v=10.0 \mathrm{~m} / \mathrm{s}$
$t=40.0 \mathrm{~s}$

Figure 2.29 The airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$ and slows to a final velocity of $10.0 \mathrm{~m} / \mathrm{s}$ before heading for the terminal. Note that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation $v=v_{0}+$ at gives us insight into the relationships among velocity, acceleration, and time. From it we can see, for example, that

- final velocity depends on how large the acceleration is and how long it lasts
- if the acceleration is zero, then the final velocity equals the initial velocity ($v=v_{0}$), as expected (i.e., velocity is constant)
- if a is negative, then the final velocity is less than the initial velocity
(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and experiences to check that they do indeed describe nature accurately.)

Making Connections: Real-World Connection

Figure 2.30 The Space Shuttle Endeavor blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov, Flickr)
An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater velocity in the first minute or two of flight (actual ICBM burn times are classified-short-burn-time missiles are more difficult for an enemy to destroy). But the Space

Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant ($a \neq 0$)
We can combine the equations above to find a third equation that allows us to calculate the final position of an object experiencing constant acceleration. We start with

$$
\begin{equation*}
v=v_{0}+a t \tag{2.37}
\end{equation*}
$$

Adding v_{0} to each side of this equation and dividing by 2 gives

$$
\begin{equation*}
\frac{v_{0}+v}{2}=v_{0}+\frac{1}{2} a t \tag{2.38}
\end{equation*}
$$

Since $\frac{v_{0}+v}{2}=\bar{v}$ for constant acceleration, then

$$
\begin{equation*}
\bar{v}=v_{0}+\frac{1}{2} a t \tag{2.39}
\end{equation*}
$$

Now we substitute this expression for \bar{v} into the equation for displacement, $x=x_{0}+\bar{v} t$, yielding

$$
\begin{equation*}
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}(\text { constant } a) \tag{2.40}
\end{equation*}
$$

Example 2.10 Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Suppose such a dragster accelerates from rest at this rate for 5.56 s . How far does it travel in this time?

Figure 2.31 U.S. Army Top Fuel pilot Tony "The Sarge" Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William Thurmond. Photo Courtesy of U.S. Army.)

Strategy

Draw a sketch.

Figure 2.32
We are asked to find displacement, which is x if we take x_{0} to be zero. (Think about it like the starting line of a race. It can be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$ once we identify v_{0}, a, and t from the statement of the problem.

Solution

1. Identify the knowns. Starting from rest means that $v_{0}=0, a$ is given as $26.0 \mathrm{~m} / \mathrm{s}^{2}$ and t is given as 5.56 s .
2. Plug the known values into the equation to solve for the unknown x :

$$
\begin{equation*}
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2.41}
\end{equation*}
$$

Since the initial position and velocity are both zero, this simplifies to

$$
\begin{equation*}
x=\frac{1}{2} a t^{2} \tag{2.42}
\end{equation*}
$$

Substituting the identified values of a and t gives

$$
\begin{equation*}
x=\frac{1}{2}\left(26.0 \mathrm{~m} / \mathrm{s}^{2}\right)(5.56 \mathrm{~s})^{2} \tag{2.43}
\end{equation*}
$$

yielding

$$
\begin{equation*}
x=402 \mathrm{~m} \tag{2.44}
\end{equation*}
$$

Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s , but top-notch dragsters can do a quarter mile in even less time than this.

What else can we learn by examining the equation $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} ?$ We see that:

- displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster covers only one fourth of the total distance in the first half of the elapsed time
- if acceleration is zero, then the initial velocity equals average velocity ($\left.v_{0}=\bar{v}\right)$ and $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$ becomes $x=x_{0}+v_{0} t$

Solving for Final Velocity when Velocity Is Not Constant ($a \neq 0$)

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.
If we solve $v=v_{0}+a t$ for t, we get

$$
\begin{equation*}
t=\frac{v-v_{0}}{a} \tag{2.45}
\end{equation*}
$$

Substituting this and $\bar{v}=\frac{v_{0}+v}{2}$ into $x=x_{0}+\bar{v} t$, we get

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)(\text { constant } a) \tag{2.46}
\end{equation*}
$$

Example 2.11 Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in Example 2.10 without using information about time.

Strategy

Draw a sketch.

Figure 2.33

The equation $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that $v_{0}=0$, since the dragster starts from rest. Then we note that $x-x_{0}=402 \mathrm{~m}$ (this was the answer in Example 2.10). Finally, the average acceleration was given to be $a=26.0 \mathrm{~m} / \mathrm{s}^{2}$.
2. Plug the knowns into the equation $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ and solve for v.

$$
\begin{equation*}
v^{2}=0+2\left(26.0 \mathrm{~m} / \mathrm{s}^{2}\right)(402 \mathrm{~m}) \tag{2.47}
\end{equation*}
$$

Thus

$$
\begin{equation*}
v^{2}=2.09 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{2.48}
\end{equation*}
$$

To get v, we take the square root:

$$
\begin{equation*}
v=\sqrt{2.09 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}}=145 \mathrm{~m} / \mathrm{s} \tag{2.49}
\end{equation*}
$$

Discussion

$145 \mathrm{~m} / \mathrm{s}$ is about $522 \mathrm{~km} / \mathrm{h}$ or about $324 \mathrm{mi} / \mathrm{h}$, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ can produce further insights into the general relationships among physical quantities:

- The final velocity depends on how large the acceleration is and the distance over which it acts
- For a fixed deceleration, a car that is going twice as fast doesn't simply stop in twice the distance-it takes much further to stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

Summary of Kinematic Equations (constant a)

$$
\begin{gather*}
x=x_{0}+\bar{v} t \tag{2.50}\\
\bar{v}=\frac{v_{0}+v}{2} \tag{2.51}\\
v=v_{0}+a t \tag{2.52}\\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2.53}\\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \tag{2.54}
\end{gather*}
$$

Example 2.12 Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of $7.00 \mathrm{~m} / \mathrm{s}^{2}$, whereas on wet concrete it can decelerate at only $5.00 \mathrm{~m} / \mathrm{s}^{2}$. Find the distances necessary to stop a car moving at $30.0 \mathrm{~m} / \mathrm{s}$ (about $110 \mathrm{~km} / \mathrm{h}$) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Figure 2.34
In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Solution for (a)

1. Identify the knowns and what we want to solve for. We know that $v_{0}=30.0 \mathrm{~m} / \mathrm{s} ; v=0 ; a=-7.00 \mathrm{~m} / \mathrm{s}^{2}$ (a is negative because it is in a direction opposite to velocity). We take x_{0} to be 0 . We are looking for displacement Δx, or $x-x_{0}$.
2. Identify the equation that will help up solve the problem. The best equation to use is

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) . \tag{2.55}
\end{equation*}
$$

This equation is best because it includes only one unknown, x. We know the values of all the other variables in this equation. (There are other equations that would allow us to solve for x, but they require us to know the stopping time, t, which we do not know. We could use them but it would entail additional calculations.)
3. Rearrange the equation to solve for x.

$$
\begin{equation*}
x-x_{0}=\frac{v^{2}-v_{0}^{2}}{2 a} \tag{2.56}
\end{equation*}
$$

4. Enter known values

$$
\begin{equation*}
x-0=\frac{0^{2}-(30.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-7.00 \mathrm{~m} / \mathrm{s}^{2}\right)} \tag{2.57}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
x=64.3 \mathrm{~m} \text { on dry concrete. } \tag{2.58}
\end{equation*}
$$

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is $-5.00 \mathrm{~m} / \mathrm{s}^{2}$. The result is

$$
\begin{equation*}
x_{\text {wet }}=90.0 \mathrm{~m} \text { on wet concrete. } \tag{2.59}
\end{equation*}
$$

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It is reasonable to assume that the velocity remains constant during the driver's reaction time.

1. Identify the knowns and what we want to solve for. We know that $\bar{v}=30.0 \mathrm{~m} / \mathrm{s} ; t_{\text {reaction }}=0.500 \mathrm{~s} ; a_{\text {reaction }}=0$. We take $x_{0-\text { reaction }}$ to be 0 . We are looking for $x_{\text {reaction }}$.
2. Identify the best equation to use.
$x=x_{0}+\bar{v} t$ works well because the only unknown value is x, which is what we want to solve for.
3. Plug in the knowns to solve the equation.

$$
\begin{equation*}
x=0+(30.0 \mathrm{~m} / \mathrm{s})(0.500 \mathrm{~s})=15.0 \mathrm{~m} \tag{2.60}
\end{equation*}
$$

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet concrete 15.0 m greater than if he reacted instantly.
4. Add the displacement during the reaction time to the displacement when braking.

$$
\begin{equation*}
x_{\text {braking }}+x_{\text {reaction }}=x_{\text {total }} \tag{2.61}
\end{equation*}
$$

a. $64.3 \mathrm{~m}+15.0 \mathrm{~m}=79.3 \mathrm{~m}$ when dry
b. $90.0 \mathrm{~m}+15.0 \mathrm{~m}=105 \mathrm{~m}$ when wet

Figure 2.35 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at $30.0 \mathrm{~m} / \mathrm{s}$. Also shown are the total distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in fact be solved by other methods, but the solutions presented above are the shortest.

Example 2.13 Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a $200-\mathrm{m}$-long ramp. If its initial velocity is $10.0 \mathrm{~m} / \mathrm{s}$ and it accelerates at $2.00 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

Draw a sketch.

Figure 2.36

We are asked to solve for the time t. As before, we identify the known quantities in order to choose a convenient physical relationship (that is, an equation with one unknown, t).

Solution

1. Identify the knowns and what we want to solve for. We know that $v_{0}=10 \mathrm{~m} / \mathrm{s} ; a=2.00 \mathrm{~m} / \mathrm{s}^{2}$; and $x=200 \mathrm{~m}$.
2. We need to solve for t. Choose the best equation. $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$ works best because the only unknown in the equation is the variable t for which we need to solve.
3. We will need to rearrange the equation to solve for t. In this case, it will be easier to plug in the knowns first.

$$
\begin{equation*}
200 \mathrm{~m}=0 \mathrm{~m}+(10.0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \tag{2.62}
\end{equation*}
$$

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s) to cancel by taking $t=t \mathrm{~s}$, where t is the magnitude of time and s is the unit. Doing so leaves

$$
\begin{equation*}
200=10 t+t^{2} \tag{2.63}
\end{equation*}
$$

5. Use the quadratic formula to solve for t.
(a) Rearrange the equation to get 0 on one side of the equation.

$$
\begin{equation*}
t^{2}+10 t-200=0 \tag{2.64}
\end{equation*}
$$

This is a quadratic equation of the form

$$
\begin{equation*}
a t^{2}+b t+c=0 \tag{2.65}
\end{equation*}
$$

where the constants are $a=1.00, b=10.0$, and $c=-200$.
(b) Its solutions are given by the quadratic formula:

$$
\begin{equation*}
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{2.66}
\end{equation*}
$$

This yields two solutions for t, which are

$$
\begin{equation*}
t=10.0 \text { and }-20.0 \tag{2.67}
\end{equation*}
$$

In this case, then, the time is $t=t$ in seconds, or

$$
\begin{equation*}
t=10.0 \mathrm{~s} \text { and }-20.0 \mathrm{~s} . \tag{2.68}
\end{equation*}
$$

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We can discard that solution. Thus,

$$
\begin{equation*}
t=10.0 \mathrm{~s} . \tag{2.69}
\end{equation*}
$$

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that will help you succeed in this invaluable task.

Making Connections: Take-Home Experiment-Breaking News

We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car doing a slow (and safe) stop. Recall that, for average acceleration, $\bar{a}=\Delta v / \Delta t$. While traveling in a car, slowly apply the brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Check Your Understanding

A manned rocket accelerates at a rate of $20 \mathrm{~m} / \mathrm{s}^{2}$ during launch. How long does it take the rocket reach a velocity of $400 \mathrm{~m} / \mathrm{s}$?

Solution

To answer this, choose an equation that allows you to solve for time t, given only a, v_{0}, and v.

$$
\begin{equation*}
v=v_{0}+a t \tag{2.70}
\end{equation*}
$$

Rearrange to solve for t.

$$
\begin{equation*}
t=\frac{v-v}{a}=\frac{400 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~m} / \mathrm{s}^{2}}=20 \mathrm{~s} \tag{2.71}
\end{equation*}
$$

2.6 Problem-Solving Basics for One-Dimensional Kinematics

Figure 2.37 Problem-solving skills are essential to your success in Physics. (credit: scui3asteveo, Flickr)
Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset. You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally identifying the knowns is of particular importance in applying physics to real-world situations. Remember, "stopped" means velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown-that is, all of the other variables are known, so you can easily solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units. This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical part of the answer is also correct.

Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important-the goal of physics is to accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to mechanically solve a problem.
When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously. There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem solving become almost automatic. One way to get practice is to work out the text's examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then produces an unreasonable result. For example, if a person starting a foot race accelerates at $0.40 \mathrm{~m} / \mathrm{s}^{2}$ for 100 s , his final speed will be $40 \mathrm{~m} / \mathrm{s}$ (about $150 \mathrm{~km} / \mathrm{h}$)—clearly unreasonable because the time of 100 s is an unreasonable premise. The physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the result of a problem to see if it is reasonable does more than help uncover errors in problem solving-it also builds intuition in judging whether nature is being accurately described.
Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1

Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find the unknown final velocity. That is,

$$
\begin{equation*}
v=v_{0}+a t=0+\left(0.40 \mathrm{~m} / \mathrm{s}^{2}\right)(100 \mathrm{~s})=40 \mathrm{~m} / \mathrm{s} \tag{2.72}
\end{equation*}
$$

Step 2

Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, ...? In this case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

$$
\begin{equation*}
\left(\frac{40 \mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{3.28 \mathrm{ft}}{\mathrm{~m}}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~s}}{\mathrm{~min}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=89 \mathrm{mph} \tag{2.73}
\end{equation*}
$$

This velocity is about four times greater than a person can run-so it is too large.

Step 3

If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration and think about what the number means. If someone accelerates at $0.40 \mathrm{~m} / \mathrm{s}^{2}$, their velocity is increasing by $0.4 \mathrm{~m} / \mathrm{s}$ each second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant rate of $0.40 \mathrm{~m} / \mathrm{s}^{2}$ for 100 s (almost two minutes).

2.7 Falling Objects

Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects, we can examine some interesting situations and learn much about gravity in the process.

Gravity

The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we expect light objects to fall slower than heavy ones.

In air

In a vacuum

In a vacuum (the hard way)

Figure 2.38 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to gravity is only $1.67 \mathrm{~m} / \mathrm{s}^{2}$.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not large.) Air resistance opposes the motion of an object through the air, while friction between objects-such as between clothes and a laundry chute or between a stone and a pool into which it is dropped-also opposes motion between them. For the ideal situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called the acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, g. It is constant at any given location on Earth and has the average value

$$
\begin{equation*}
g=9.80 \mathrm{~m} / \mathrm{s}^{2} \tag{2.74}
\end{equation*}
$$

Although g varies from $9.78 \mathrm{~m} / \mathrm{s}^{2}$ to $9.83 \mathrm{~m} / \mathrm{s}^{2}$, depending on latitude, altitude, underlying geological formations, and local topography, the average value of $9.80 \mathrm{~m} / \mathrm{s}^{2}$ will be used in this text unless otherwise specified. The direction of the acceleration due to gravity is downward (towards the center of Earth). In fact, its direction defines what we call vertical. Note that whether the acceleration a in the kinematic equations has the value $+g$ or $-g$ depends on how we define our coordinate system. If we define the upward direction as positive, then $a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$, and if we define the downward direction as positive, then $a=g=9.80 \mathrm{~m} / \mathrm{s}^{2}$.

One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude g. We will also represent vertical displacement with the symbol y and use x for horizontal displacement.

$$
\begin{align*}
& \text { Kinematic Equations for Objects in Free-Fall where Acceleration }=-g \\
& \qquad \begin{array}{c}
v=v_{0}-g t \\
y=y_{0}+v_{0} t-\frac{1}{2} g t^{2} \\
v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)
\end{array} \tag{2.75}
\end{align*}
$$

Example 2.14 Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. The rock misses the edge of the cliff as it falls back to earth. Calculate the position and velocity of the rock $1.00 \mathrm{~s}, 2.00 \mathrm{~s}$, and 3.00 s after it is thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

Figure 2.39

We are asked to determine the position y at various times. It is reasonable to take the initial position y_{0} to be zero. This problem involves onedimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive too. The acceleration due to gravity is downward, so a is negative. It is crucial that the initial velocity and the acceleration due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as y_{1} and $v_{1} ; y_{2}$ and v_{2}; and y_{3} and v_{3}.

Solution for Position y_{1}

1. Identify the knowns. We know that $y_{0}=0 ; v_{0}=13.0 \mathrm{~m} / \mathrm{s} ; a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$; and $t=1.00 \mathrm{~s}$.
2. Identify the best equation to use. We will use $y=y_{0}+v_{0} t+\frac{1}{2} a t^{2}$ because it includes only one unknown, y (or y_{1}, here), which is the value we want to find.
3. Plug in the known values and solve for y_{1}.

$$
\begin{equation*}
y=0+(13.0 \mathrm{~m} / \mathrm{s})(1.00 \mathrm{~s})+\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})^{2}=8.10 \mathrm{~m} \tag{2.78}
\end{equation*}
$$

Discussion

The rock is 8.10 m above its starting point at $t=1.00 \mathrm{~s}$, since $y_{1}>y_{0}$. It could be moving up or down; the only way to tell is to calculate v_{1} and find out if it is positive or negative.

Solution for Velocity v_{1}

1. Identify the knowns. We know that $y_{0}=0 ; v_{0}=13.0 \mathrm{~m} / \mathrm{s} ; a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$; and $t=1.00 \mathrm{~s}$. We also know from the solution above that $y_{1}=8.10 \mathrm{~m}$.
2. Identify the best equation to use. The most straightforward is $v=v_{0}-g t$ (from $v=v_{0}+a t$, where
$a=$ gravitational acceleration $=-g$).
3. Plug in the knowns and solve.

$$
\begin{equation*}
v_{1}=v_{0}-g t=13.0 \mathrm{~m} / \mathrm{s}-\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})=3.20 \mathrm{~m} / \mathrm{s} \tag{2.79}
\end{equation*}
$$

Discussion

The positive value for v_{1} means that the rock is still heading upward at $t=1.00 \mathrm{~s}$. However, it has slowed from its original $13.0 \mathrm{~m} / \mathrm{s}$, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at $t=2.00 \mathrm{~s}$ and 3.00 s are the same as those above. The results are summarized in Table 2.1 and illustrated in Figure 2.40.

Table 2.1 Results

Time, t	Position, y	Velocity, v	Acceleration, a
1.00 s	8.10 m	$3.20 \mathrm{~m} / \mathrm{s}$	$-9.80 \mathrm{~m} / \mathrm{s}^{2}$
2.00 s	6.40 m	$-6.60 \mathrm{~m} / \mathrm{s}$	$-9.80 \mathrm{~m} / \mathrm{s}^{2}$
3.00 s	-5.10 m	$-16.4 \mathrm{~m} / \mathrm{s}$	$-9.80 \mathrm{~m} / \mathrm{s}^{2}$

Graphing the data helps us understand it more clearly.

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that the graph shows some horizontal motion-the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since y_{1} and v_{1} are both positive. At 2.00 s , the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s , both y_{3} and v_{3} are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still $-9.80 \mathrm{~m} / \mathrm{s}^{2}$. Its acceleration is $-9.80 \mathrm{~m} / \mathrm{s}^{2}$ for the whole trip-while it is moving up and while it is moving down. Note that the values for y are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-fall applies to upward motion as well as downward. Both have the same acceleration-the acceleration due to gravity, which remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by about 1 cm . Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far would you travel in a car (moving at $30 \mathrm{~m} / \mathrm{s}$) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?

Example 2.15 Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question, calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial speed of $13.0 \mathrm{~m} / \mathrm{s}$.

Strategy

Draw a sketch.

Figure 2.41
Since up is positive, the final position of the rock will be negative because it finishes below the starting point at $y_{0}=0$. Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final velocity to be negative since the rock will continue to move downward.

Solution

1. Identify the knowns. $y_{0}=0 ; y_{1}=-5.10 \mathrm{~m} ; v_{0}=-13.0 \mathrm{~m} / \mathrm{s} ; a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$.
2. Choose the kinematic equation that makes it easiest to solve the problem. The equation $v^{2}=v_{0}^{2}+2 a\left(y-y_{0}\right)$ works well because the only unknown in it is v. (We will plug y_{1} in for y.)
3. Enter the known values

$$
\begin{equation*}
v^{2}=(-13.0 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(-5.10 \mathrm{~m}-0 \mathrm{~m})=268.96 \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{2.80}
\end{equation*}
$$

where we have retained extra significant figures because this is an intermediate result.
Taking the square root, and noting that a square root can be positive or negative, gives

$$
\begin{equation*}
v= \pm 16.4 \mathrm{~m} / \mathrm{s} . \tag{2.81}
\end{equation*}
$$

The negative root is chosen to indicate that the rock is still heading down. Thus,

$$
\begin{equation*}
v=-16.4 \mathrm{~m} / \mathrm{s} . \tag{2.82}
\end{equation*}
$$

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same initial speed. (See Example 2.14 and Figure 2.42(a).) This is not a coincidental result. Because we only consider the acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the starting point (using the method from Example 2.14) when the initial velocity is $13.0 \mathrm{~m} / \mathrm{s}$ straight up, a result of $\pm 3.20 \mathrm{~m} / \mathrm{s}$ is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.

Figure 2.42 (a) A person throws a rock straight up, as explored in Example 2.14. The arrows are velocity vectors at $0,1.00,2.00$, and 3.00 s . (b) A person throws a rock straight down from a cliff with the same initial speed as before, as in Example 2.15. Note that at the same distance below the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. It rises and then falls back down. When its position is $y=0$ on its way back down, its velocity is $-13.0 \mathrm{~m} / \mathrm{s}$. That is, it has the same speed on its way down as on its way up. We would then expect its velocity at a position of $y=-5.10 \mathrm{~m}$ to be the same whether we have thrown it upwards at $+13.0 \mathrm{~m} / \mathrm{s}$ or thrown it downwards at $-13.0 \mathrm{~m} / \mathrm{s}$. The velocity of the rock on its way down from $y=0$ is the same whether we have thrown it up or down to start with, as long as the speed with which it was initially thrown is the same.

Example 2.16 Find g from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is measured. See, for example, Figure 2.43. Very precise results can be produced with this method if sufficient care is taken in measuring the distance fallen and the elapsed time.

$\boldsymbol{y}(\mathbf{m})$	$\boldsymbol{v}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{t}(\mathbf{s})$
0	0	0
-0.049	-0.98	0.1
-0.196	-1.96	0.2
-0.441	-2.94	0.3
-0.784	-3.92	0.4
-1.225	-4.90	0.5

Figure 2.43 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s . Assuming the ball is not affected by air resistance, what is the precise acceleration due to gravity at this location?

Strategy

Draw a sketch.

Figure 2.44
We need to solve for acceleration a. Note that in this case, displacement is downward and therefore negative, as is acceleration.

Solution

1. Identify the knowns. $y_{0}=0 ; y=-1.0000 \mathrm{~m} ; t=0.45173 ; v_{0}=0$.
2. Choose the equation that allows you to solve for a using the known values.

$$
\begin{equation*}
y=y_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2.83}
\end{equation*}
$$

3. Substitute 0 for v_{0} and rearrange the equation to solve for a. Substituting 0 for v_{0} yields

$$
\begin{equation*}
y=y_{0}+\frac{1}{2} a t^{2} \tag{2.84}
\end{equation*}
$$

Solving for a gives

$$
\begin{equation*}
a=\frac{2\left(y-y_{0}\right)}{t^{2}} \tag{2.85}
\end{equation*}
$$

4. Substitute known values yields

$$
\begin{equation*}
a=\frac{2(-1.0000 \mathrm{~m}-0)}{(0.45173 \mathrm{~s})^{2}}=-9.8010 \mathrm{~m} / \mathrm{s}^{2} \tag{2.86}
\end{equation*}
$$

so, because $a=-g$ with the directions we have chosen,

$$
\begin{equation*}
g=9.8010 \mathrm{~m} / \mathrm{s}^{2} \tag{2.87}
\end{equation*}
$$

Discussion

The negative value for a indicates that the gravitational acceleration is downward, as expected. We expect the value to be somewhere around the average value of $9.80 \mathrm{~m} / \mathrm{s}^{2}$, so $9.8010 \mathrm{~m} / \mathrm{s}^{2}$ makes sense. Since the data going into the calculation are relatively precise, this value for g is more precise than the average value of $9.80 \mathrm{~m} / \mathrm{s}^{2}$; it represents the local value for the acceleration due to gravity.

Check Your Understanding

A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air resistance), how long does it take to hit the water?

Solution

We know that initial position $y_{0}=0$, final position $y=-30.0 \mathrm{~m}$, and $a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$. We can then use the equation $y=y_{0}+v_{0} t+\frac{1}{2} a t^{2}$ to solve for t. Inserting $a=-g$, we obtain

$$
\begin{align*}
& y=0+0-\frac{1}{2} g t^{2} \tag{2.88}\\
& t^{2}=\frac{2 y}{-g} \\
& t= \pm \sqrt{\frac{2 y}{-g}}= \pm \sqrt{\frac{2(-30.0 \mathrm{~m})}{-9.80 \mathrm{~m} / \mathrm{s}^{2}}}= \pm \sqrt{6.12 \mathrm{~s}^{2}}=2.47 \mathrm{~s} \approx 2.5 \mathrm{~s}
\end{align*}
$$

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to hit the water.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the individual terms (e.g. $y=b x$) to see how they add to generate the polynomial curve.

Figure 2.45 Equation Grapher (http://cnx.org/content/m42102/1.5/equation-grapher_en.jar)

2.8 Graphical Analysis of One-Dimensional Motion

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships between physical quantities. This section uses graphs of displacement, velocity, and acceleration versus time to illustrate one-dimensional kinematics.

Slopes and General Relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the vertical axis a dependent variable. If we call the horizontal axis the x-axis and the vertical axis the y-axis, as in Figure 2.46, a straight-line graph has the general form

$$
\begin{equation*}
y=m x+b \tag{2.89}
\end{equation*}
$$

Here m is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter b is used for the y-intercept, which is the point at which the line crosses the vertical axis.

Figure 2.46 A straight-line graph. The equation for a straight line is $y=m x+b$.

Graph of Displacement vs. Time ($a=0$, so v is constant)

Time is usually an independent variable that other quantities, such as displacement, depend upon. A graph of displacement versus time would, thus, have x on the vertical axis and t on the horizontal axis. Figure 2.47 is just such a straight-line graph. It shows a graph of displacement versus time for a jet-powered car on a very flat dry lake bed in Nevada.

Figure 2.47 Graph of displacement versus time for a jet-powered car on the Bonneville Salt Flats.
Using the relationship between dependent and independent variables, we see that the slope in the graph above is average velocity \bar{v} and the intercept is displacement at time zero-that is, x_{0}. Substituting these symbols into $y=m x+b$ gives

$$
\begin{equation*}
x=\bar{v} t+x_{0} \tag{2.90}
\end{equation*}
$$

or

$$
\begin{equation*}
x=x_{0}+\bar{v} t . \tag{2.91}
\end{equation*}
$$

Thus a graph of displacement versus time gives a general relationship among displacement, velocity, and time, as well as giving detailed numerical information about a specific situation.

The Slope of x vs. t

The slope of the graph of displacement x vs. time t is velocity v.

$$
\begin{equation*}
\text { slope }=\frac{\Delta x}{\Delta t}=v \tag{2.92}
\end{equation*}
$$

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

From the figure we can see that the car has a displacement of 400 m at time 0.650 m at $t=1.0 \mathrm{~s}$, and so on. Its displacement at times other than those listed in the table can be read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

Example 2.17 Determining Average Velocity from a Graph of Displacement versus Time: Jet Car

Find the average velocity of the car whose position is graphed in Figure 2.47.

Strategy

The slope of a graph of x vs. t is average velocity, since slope equals rise over run. In this case, rise $=$ change in displacement and run $=$ change in time, so that

$$
\begin{equation*}
\text { slope }=\frac{\Delta x}{\Delta t}=\bar{v} . \tag{2.93}
\end{equation*}
$$

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: ($6.4 \mathrm{~s}, 2000 \mathrm{~m}$) and ($0.50 \mathrm{~s}, 525 \mathrm{~m}$). (Note, however, that you could choose any two points.)
2. Substitute the x and t values of the chosen points into the equation. Remember in calculating change (Δ) we always use final value minus initial value.

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{2000 \mathrm{~m}-525 \mathrm{~m}}{6.4 \mathrm{~s}-0.50 \mathrm{~s}} \tag{2.94}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\bar{v}=250 \mathrm{~m} / \mathrm{s} . \tag{2.95}
\end{equation*}
$$

Discussion

This is an impressively large land speed ($900 \mathrm{~km} / \mathrm{h}$, or about $560 \mathrm{mi} / \mathrm{h}$): much greater than the typical highway speed limit of $60 \mathrm{mi} / \mathrm{h}(27 \mathrm{~m} / \mathrm{s}$ or $96 \mathrm{~km} / \mathrm{h})$, but considerably shy of the record of $343 \mathrm{~m} / \mathrm{s}(1234 \mathrm{~km} / \mathrm{h}$ or $766 \mathrm{mi} / \mathrm{h})$ set in 1997.

Graphs of Motion when a is constant but $a \neq 0$

The graphs in Figure 2.48 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the displacement and velocity are initially 200 m and $15 \mathrm{~m} / \mathrm{s}$, respectively.

Figure 2.48 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an x vs. t graph is velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the slope of the tangent at that point. (b) The slope of the v vs. t graph is constant for this part of the motion, indicating constant acceleration. (c) Acceleration has the constant value of $5.0 \mathrm{~m} / \mathrm{s}^{2}$ over the time interval plotted.

Figure 2.49 A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)
The graph of displacement versus time in Figure 2.48(a) is a curve rather than a straight line. The slope of the curve becomes steeper as time progresses, showing that the velocity is increasing over time. The slope at any point on a displacement-versus-time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.48(a). If this is done at every point on the curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.48(b) is obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.48(c).

Example 2.18 Determining Instantaneous Velocity from the Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x vs. t graph in the graph below.

Figure 2.50 The slope of an x vs. t graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is illustrated in Figure 2.50, where Q is the point at $t=25 \mathrm{~s}$.

Solution

1. Find the tangent line to the curve at $t=25 \mathrm{~s}$.
2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m at time 32 s .
3. Plug these endpoints into the equation to solve for the slope, v.

$$
\begin{equation*}
\text { slope }=v_{\mathrm{Q}}=\frac{\Delta x_{\mathrm{Q}}}{\Delta t_{\mathrm{Q}}}=\frac{(3120 \mathrm{~m}-1300 \mathrm{~m})}{(32 \mathrm{~s}-19 \mathrm{~s})} \tag{2.96}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
v_{\mathrm{Q}}=\frac{1820 \mathrm{~m}}{13 \mathrm{~s}}=140 \mathrm{~m} / \mathrm{s} \tag{2.97}
\end{equation*}
$$

Discussion

This is the value given in this figure's table for v at $t=25 \mathrm{~s}$. The value of $140 \mathrm{~m} / \mathrm{s}$ for v_{Q} is plotted in Figure 2.50 . The entire graph of v vs. t can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run; on a v vs. t graph, rise $=$ change in velocity Δv and run $=$ change in time Δt.

The Slope of v vs. t
The slope of a graph of velocity v vs. time t is acceleration a.

$$
\begin{equation*}
\text { slope }=\frac{\Delta v}{\Delta t}=a \tag{2.98}
\end{equation*}
$$

Since the velocity versus time graph in Figure 2.48(b) is a straight line, its slope is the same everywhere, implying that acceleration is constant. Acceleration versus time is graphed in Figure 2.48(c).

Additional general information can be obtained from Figure 2.50 and the expression for a straight line, $y=m x+b$.
In this case, the vertical axis y is V, the intercept b is v_{0}, the slope m is a, and the horizontal axis x is t. Substituting these symbols yields

$$
\begin{equation*}
v=v_{0}+a t \tag{2.99}
\end{equation*}
$$

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.
It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant

Now consider the motion of the jet car as it goes from $165 \mathrm{~m} / \mathrm{s}$ to its top velocity of $250 \mathrm{~m} / \mathrm{s}$, graphed in Figure 2.51. Time again starts at zero, and the initial displacement and velocity are 2900 m and $165 \mathrm{~m} / \mathrm{s}$, respectively. (These were the final displacement and velocity of the car in the motion graphed in Figure 2.48.) Acceleration gradually decreases from $5.0 \mathrm{~m} / \mathrm{s}^{2}$ to zero when the car hits $250 \mathrm{~m} / \mathrm{s}$. The slope of the x vs. t graph increases until $t=55 \mathrm{~s}$, after which time the slope is constant. Similarly, velocity increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.

Figure 2.51 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.48 ends. (a) The slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration; it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example 2.19 Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the v vs. t graph in Figure 2.51(b).

Strategy

The slope of the curve at $t=25 \mathrm{~s}$ is equal to the slope of the line tangent at that point, as illustrated in Figure 2.51(b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, a.

$$
\begin{gather*}
\text { slope }=\frac{\Delta v}{\Delta t}=\frac{(260 \mathrm{~m} / \mathrm{s}-210 \mathrm{~m} / \mathrm{s})}{(51 \mathrm{~s}-1.0 \mathrm{~s})} \tag{2.100}\\
a=\frac{50 \mathrm{~m} / \mathrm{s}}{50 \mathrm{~s}}=1.0 \mathrm{~m} / \mathrm{s}^{2} \tag{2.101}
\end{gather*}
$$

Discussion

Note that this value for a is consistent with the value plotted in Figure 2.51(c) at $t=25 \mathrm{~s}$.

A graph of displacement versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point. Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying relationships.

Check Your Understanding

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the graph. (b)What would a graph of the ship's acceleration look like?

Figure 2.52

Solution

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate decreases. It maintains this lower deceleration rate until it stops moving.
(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in the second leg, and constant negative acceleration.

Figure 2.53

Glossary

acceleration due to gravity: acceleration of an object as a result of gravity
acceleration: the rate of change in velocity; the change in velocity over time
average acceleration: the change in velocity divided by the time over which it changes
average speed: distance traveled divided by time during which motion occurs
average velocity: displacement divided by time over which displacement occurs
deceleration: acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity
dependent variable: the variable that is being measured; usually plotted along the y-axis
displacement: the change in position of an object
distance traveled: the total length of the path traveled between two positions
distance: the magnitude of displacement between two positions
elapsed time: the difference between the ending time and beginning time
free-fall: the state of movement that results from gravitational force only
independent variable: the variable that the dependent variable is measured with respect to; usually plotted along the x-axis
instantaneous acceleration: acceleration at a specific point in time
instantaneous speed: magnitude of the instantaneous velocity
instantaneous velocity: velocity at a specific instant, or the average velocity over an infinitesimal time interval
kinematics: the study of motion without considering its causes
model: simplified description that contains only those elements necessary to describe the physics of a physical situation
position: the location of an object at a particular time
scalar: a quantity that is described by magnitude, but not direction
slope: the difference in y-value (the rise) divided by the difference in x-value (the run) of two points on a straight line
time: change, or the interval over which change occurs
vector: a quantity that is described by both magnitude and direction
y-intercept: the y-value when $x=0$, or when the graph crosses the y-axis

Section Summary

2.1 Displacement

- Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called onedimensional motion.
- Displacement is the change in position of an object.
- In symbols, displacement Δx is defined to be

$$
\Delta x=x_{\mathrm{f}}-x_{0},
$$

where x_{0} is the initial position and x_{f} is the final position. In this text, the Greek letter Δ (delta) always means "change in" whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a magnitude.

- When you start a problem, assign which direction will be positive.
- Distance is the magnitude of displacement between two positions.
- Distance traveled is the total length of the path traveled between two positions.

2.2 Vectors, Scalars, and Coordinate Systems

- A vector is any quantity that has magnitude and direction.
- A scalar is any quantity that has magnitude but no direction.
- Displacement and velocity are vectors, whereas distance and speed are scalars.
- In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

2.3 Time, Velocity, and Speed

- Time is measured in terms of change, and its SI unit is the second (s). Elapsed time for an event is

$$
\Delta t=t_{\mathrm{f}}-t_{0}
$$

where t_{f} is the final time and t_{0} is the initial time. The initial time is often taken to be zero, as if measured with a stopwatch; the elapsed time is then just t

- Average velocity \bar{v} is defined as displacement divided by the travel time. In symbols, average velocity is

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{\mathrm{f}}-x_{0}}{t_{\mathrm{f}}-t_{0}} .
$$

- The SI unit for velocity is m / s.
- Velocity is a vector and thus has a direction.
- Instantaneous velocity v is the velocity at a specific instant or the average velocity for an infinitesimal interval.
- Instantaneous speed is the magnitude of the instantaneous velocity.
- Instantaneous speed is a scalar quantity, as it has no direction specified.
- Average speed is the total distance traveled divided by the elapsed time. (Average speed is not the magnitude of the average velocity.) Speed is a scalar quantity; it has no direction associated with it.

2.4 Acceleration

- Acceleration is the rate at which velocity changes. In symbols, average acceleration \bar{a} is

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}
$$

- The SI unit for acceleration is $\mathrm{m} / \mathrm{s}^{2}$.
- Acceleration is a vector, and thus has a both a magnitude and direction.
- Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
- Instantaneous acceleration a is the acceleration at a specific instant in time.
- Deceleration is an acceleration with a direction opposite to that of the velocity.

2.5 Motion Equations for Constant Acceleration in One Dimension

- To simplify calculations we take acceleration to be constant, so that $\bar{a}=a$ at all times.
- We also take initial time to be zero.
- Initial position and velocity are given a subscript 0; final values have no subscript. Thus,

$$
\left.\begin{array}{rl}
\Delta t & =t \\
\Delta x & =x-x_{0} \\
\Delta v & =v-v_{0}
\end{array}\right\}
$$

- The following kinematic equations for motion with constant a are useful:

$$
\begin{gathered}
x=x_{0}+\bar{v} t \\
\bar{v}=\frac{v_{0}+v}{2} \\
v=v_{0}+a t \\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{gathered}
$$

- In vertical motion, y is substituted for x.

2.6 Problem-Solving Basics for One-Dimensional Kinematics

- The six basic problem solving steps for physics are:

Step 1. Examine the situation to determine which physical principles are involved.
Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
Step 4. Find an equation or set of equations that can help you solve the problem.
Step 5. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
Step 6. Check the answer to see if it is reasonable: Does it make sense?

2.7 Falling Objects

- An object in free-fall experiences constant acceleration if air resistance is negligible.
- On Earth, all free-falling objects have an acceleration due to gravity g, which averages

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

- Whether the acceleration a should be taken as $+g$ or $-g$ is determined by your choice of coordinate system. If you choose the upward direction as positive, $a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$ is negative. In the opposite case, $a=+\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ is positive. Since acceleration is constant, the kinematic equations above can be applied with the appropriate $+g$ or $-g$ substituted for a.
- For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.

2.8 Graphical Analysis of One-Dimensional Motion

- Graphs of motion can be used to analyze motion.
- Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
- The slope of a graph of displacement x vs. time t is velocity v.
- The slope of a graph of velocity v vs. time t graph is acceleration a.
- Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

2.1 Displacement

1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Specifically identify each quantity in your example.
2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which magnitude of displacement and displacement are exactly the same?
3. Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to $50 \mu \mathrm{~m} / \mathrm{s}\left(50 \times 10^{-6} \mathrm{~m} / \mathrm{s}\right)$ have been observed. The total distance traveled by a bacterium is large for its size, while its displacement is small. Why is this?

2.2 Vectors, Scalars, and Coordinate Systems

4. A student writes, "A bird that is diving for prey has a speed of $-10 \mathrm{~m} / \mathrm{s}$." What is wrong with the student's statement? What has the student actually described? Explain.
5. What is the speed of the bird in Exercise 2.4?
6. Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
7. A weather forecast states that the temperature is predicted to be $-5^{\circ} \mathrm{C}$ the following day. Is this temperature a vector or a scalar quantity? Explain.

2.3 Time, Velocity, and Speed

8. Give an example (but not one from the text) of a device used to measure time and identify what change in that device indicates a change in time.
9. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the difference between these two quantities.
10. Does a car's odometer measure position or displacement? Does its speedometer measure speed or velocity?
11. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the same?
12. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

2.4 Acceleration

13. Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.
14. Is it possible for velocity to be constant while acceleration is not zero? Explain.
15. Give an example in which velocity is zero yet acceleration is not.
16. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its acceleration? Is the acceleration positive or negative?
17. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that reduces the magnitude of a negative velocity? Of a positive velocity?

2.6 Problem-Solving Basics for One-Dimensional Kinematics

18. What information do you need in order to choose which equation or equations to use to solve a problem? Explain.
19. What is the last thing you should do when solving a problem? Explain.

2.7 Falling Objects

20. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?
21. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?
22. Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way up or down? Explain.
23. If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial speed? How would the maximum height to which it rises be affected?
24. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about $1 / 6$ that of the Earth)?
25. How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations (gravitational acceleration on the Moon is about $1 / 6$ of g on Earth)?

2.8 Graphical Analysis of One-Dimensional Motion

26. (a) Explain how you can use the graph of position versus time in Figure 2.54 to describe the change in velocity over time. Identify (b) the time (t_{a} , $t_{\mathrm{b}}, t_{\mathrm{c}}, t_{\mathrm{d}}$, or t_{e}) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and (d) the time at which it is negative.

Figure 2.54
27. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in Figure 2.55. (b) Identify the time or times ($t_{\mathrm{a}}, t_{\mathrm{b}}, t_{\mathrm{c}}$, etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At which times is it negative?

Figure 2.55
28. (a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in Figure 2.56. (b) Based on the graph, how does acceleration change over time?

Figure 2.56
29. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in Figure 2.57. (b) Identify the time or times ($t_{\mathrm{a}}, t_{\mathrm{b}}, t_{\mathrm{c}}$, etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times is it negative?

Figure 2.57
30. Consider the velocity vs. time graph of a person in an elevator shown in Figure 2.58. Suppose the elevator is initially at rest. It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Figure 2.58
31. A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity, and acceleration of the cylinder vs. time as it goes up and then down the plane.

Problems \& Exercises

2.1 Displacement

Figure 2.59
32. Find the following for path A in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.
33. Find the following for path B in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.
34. Find the following for path C in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.
35. Find the following for path D in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

2.3 Time, Velocity, and Speed

36. (a) Calculate Earth's average speed relative to the Sun. (b) What is its average velocity over a period of one year?
37. A helicopter blade spins at exactly 100 revolutions per minute. Its tip is 5.00 m from the center of rotation. (a) Calculate the average speed of the blade tip in the helicopter's frame of reference. (b) What is its average velocity over one revolution?
38. The North American and European continents are moving apart at a rate of about $3 \mathrm{~cm} / \mathrm{y}$. At this rate how long will it take them to drift 500 km farther apart than they are at present?
39. Land west of the San Andreas fault in southern California is moving at an average velocity of about $6 \mathrm{~cm} / \mathrm{y}$ northwest relative to land east of the fault. Los Angeles is west of the fault and may thus someday be at the same latitude as San Francisco, which is east of the fault. How far in the future will this occur if the displacement to be made is 590 km northwest, assuming the motion remains constant?
40. On May 26, 1934, a streamlined, stainless steel diesel train called the Zephyr set the world's nonstop long-distance speed record for trains. Its run from Denver to Chicago took 13 hours, 4 minutes, 58 seconds, and was witnessed by more than a million people along the route. The total distance traveled was 1633.8 km . What was its average speed in km / h and m / s ?
41. Tidal friction is slowing the rotation of the Earth. As a result, the orbit of the Moon is increasing in radius at a rate of approximately $4 \mathrm{~cm} / \mathrm{year}$. Assuming this to be a constant rate, how many years will pass before the radius of the Moon's orbit increases by $3.84 \times 10^{6} \mathrm{~m}(1 \%)$?
42. A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km . The trip took 18.0 min . (a) What was her average speed? (b) If the straight-line distance from her home to the university is 10.3 km in a direction 25.0° south of east, what was her average velocity? (c) If she returned home by the same path 7 h 30 min after she left, what were her average speed and velocity for the entire trip?
43. The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.1 m long, and the nerve impulse speed is $18 \mathrm{~m} / \mathrm{s}$, how long does it take for the nerve signal to travel this distance?
44. Conversations with astronauts on the lunar surface were characterized by a kind of echo in which the earthbound person's voice was so loud in the astronaut's space helmet that it was picked up by the astronaut's microphone and transmitted back to Earth. It is reasonable to assume that the echo time equals the time necessary for the radio wave to travel from the Earth to the Moon and back (that is, neglecting any time delays in the electronic equipment). Calculate the distance from Earth to the Moon given that the echo time was 2.56 s and that radio waves travel at the speed of light $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
45. A football quarterback runs 15.0 m straight down the playing field in 2.50 s . He is then hit and pushed 3.00 m straight backward in 1.75 s . He breaks the tackle and runs straight forward another 21.0 m in 5.20 s . Calculate his average velocity (a) for each of the three intervals and (b) for the entire motion.
46. The planetary model of the atom pictures electrons orbiting the atomic nucleus much as planets orbit the Sun. In this model you can view hydrogen, the simplest atom, as having a single electron in a circular orbit $1.06 \times 10^{-10} \mathrm{~m}$ in diameter. (a) If the average speed of the electron in this orbit is known to be $2.20 \times 10^{6} \mathrm{~m} / \mathrm{s}$, calculate the number of revolutions per second it makes about the nucleus. (b) What is the electron's average velocity?

2.4 Acceleration

47. A cheetah can accelerate from rest to a speed of $30.0 \mathrm{~m} / \mathrm{s}$ in 7.00 s . What is its acceleration?

48. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of $282 \mathrm{~m} / \mathrm{s}$ (1015 km / h) in 5.00 s , and was brought jarringly back to rest in only 1.40 s ! Calculate his (a) acceleration and (b) deceleration. Express each in multiples of $g\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$ by taking its ratio to the acceleration of gravity.
49. A commuter backs her car out of her garage with an acceleration of $1.40 \mathrm{~m} / \mathrm{s}^{2}$. (a) How long does it take her to reach a speed of $2.00 \mathrm{~m} / \mathrm{s}$? (b) If she then brakes to a stop in 0.800 s , what is her deceleration?
50. Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of $6.50 \mathrm{~km} / \mathrm{s}$ in 60.0 s (the actual speed and time are classified). What is its average acceleration in $\mathrm{m} / \mathrm{s}^{2}$ and in multiples of $g\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$?

2.5 Motion Equations for Constant Acceleration in One Dimension

51. An Olympic-class sprinter starts a race with an acceleration of $4.50 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is her speed 2.40 s later? (b) Sketch a graph of her position vs. time for this period.
52. A well-thrown ball is caught in a well-padded mitt. If the deceleration of the ball is $2.10 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$, and $1.85 \mathrm{~ms}\left(1 \mathrm{~ms}=10^{-3} \mathrm{~s}\right)$ elapses from the time the ball first touches the mitt until it stops, what was the initial velocity of the ball?
53. A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of $6.20 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$ for $8.10 \times 10^{-4} \mathrm{~s}$. What is its muzzle velocity (that is, its final velocity)?
54. (a) A light-rail commuter train accelerates at a rate of $1.35 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take to reach its top speed of $80.0 \mathrm{~km} / \mathrm{h}$, starting from
rest? (b) The same train ordinarily decelerates at a rate of $1.65 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take to come to a stop from its top speed? (c) In emergencies the train can decelerate more rapidly, coming to rest from $80.0 \mathrm{~km} / \mathrm{h}$ in 8.30 s . What is its emergency deceleration in $\mathrm{m} / \mathrm{s}^{2}$?
55. While entering a freeway, a car accelerates from rest at a rate of $2.40 \mathrm{~m} / \mathrm{s}^{2}$ for 12.0 s . (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car's final velocity? Solve for this unknown in the same manner as in part (c), showing all steps explicitly.
56. At the end of a race, a runner decelerates from a velocity of $9.00 \mathrm{~m} / \mathrm{s}$ at a rate of $2.00 \mathrm{~m} / \mathrm{s}^{2}$. (a) How far does she travel in the next 5.00 s ? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

57. Professional Application:

Blood is accelerated from rest to $30.0 \mathrm{~cm} / \mathrm{s}$ in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking your units. (d) Is the answer reasonable when compared with the time for a heartbeat?
58. In a slap shot, a hockey player accelerates the puck from a velocity of $8.00 \mathrm{~m} / \mathrm{s}$ to $40.0 \mathrm{~m} / \mathrm{s}$ in the same direction. If this shot takes
$3.33 \times 10^{-2} \mathrm{~s}$, calculate the distance over which the puck accelerates.
59. A powerful motorcycle can accelerate from rest to $26.8 \mathrm{~m} / \mathrm{s}(100 \mathrm{~km} /$ h) in only 3.90 s . (a) What is its average acceleration? (b) How far does it travel in that time?
60. Freight trains can produce only relatively small accelerations and decelerations. (a) What is the final velocity of a freight train that accelerates at a rate of $0.0500 \mathrm{~m} / \mathrm{s}^{2}$ for 8.00 min , starting with an initial velocity of $4.00 \mathrm{~m} / \mathrm{s}$? (b) If the train can slow down at a rate of $0.550 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take to come to a stop from this velocity? (c) How far will it travel in each case?
61. A fireworks shell is accelerated from rest to a velocity of $65.0 \mathrm{~m} / \mathrm{s}$ over a distance of 0.250 m . (a) How long did the acceleration last? (b) Calculate the acceleration.
62. A swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a velocity of $6.00 \mathrm{~m} / \mathrm{s}$ to take off and it accelerates from rest at an average rate of $0.350 \mathrm{~m} / \mathrm{s}^{2}$, how far will it travel before becoming airborne? (b) How long does this take?

63. Professional Application:

A woodpecker's brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker's head comes to a stop from an initial velocity of $0.600 \mathrm{~m} / \mathrm{s}$ in a distance of only 2.00 mm . (a) Find the acceleration in $\mathrm{m} / \mathrm{s}^{2}$ and in multiples of $g\left(g=9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$. (b) Calculate the stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain's deceleration, expressed in multiples of g ?
64. An unwary football player collides with a padded goalpost while running at a velocity of $7.50 \mathrm{~m} / \mathrm{s}$ and comes to a full stop after compressing the padding and his body 0.350 m . (a) What is his deceleration? (b) How long does the collision last?
65. In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived,
with few life-threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot's speed upon impact was $123 \mathrm{mph}(54 \mathrm{~m} /$ s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m .
66. Consider a grey squirrel falling out of a tree to the ground. (a) If we ignore air resistance in this case (only for the sake of this problem), determine a squirrel's velocity just before hitting the ground, assuming it fell from a height of 3.0 m . (b) If the squirrel stops in a distance of 2.0 cm through bending its limbs, compare its deceleration with that of the airman in the previous problem.
67. An express train passes through a station. It enters with an initial velocity of $22.0 \mathrm{~m} / \mathrm{s}$ and decelerates at a rate of $0.150 \mathrm{~m} / \mathrm{s}^{2}$ as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?
68. Dragsters can actually reach a top speed of $145 \mathrm{~m} / \mathrm{s}$ in only 4.45 s-considerably less time than given in Example 2.10 and Example 2.11. (a) Calculate the average acceleration for such a dragster. (b) Find the final velocity of this dragster starting from rest and accelerating at the rate found in (a) for 402 m (a quarter mile) without using any information on time. (c) Why is the final velocity greater than that used to find the average acceleration? Hint: Consider whether the assumption of constant acceleration is valid for a dragster. If not, discuss whether the acceleration would be greater at the beginning or end of the run and what effect that would have on the final velocity.
69. A bicycle racer sprints at the end of a race to clinch a victory. The racer has an initial velocity of $11.5 \mathrm{~m} / \mathrm{s}$ and accelerates at the rate of $0.500 \mathrm{~m} / \mathrm{s}^{2}$ for 7.00 s . (a) What is his final velocity? (b) The racer continues at this velocity to the finish line. If he was 300 m from the finish line when he started to accelerate, how much time did he save? (c) One other racer was 5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at $11.8 \mathrm{~m} / \mathrm{s}$ until the finish line. How far ahead of him (in meters and in seconds) did the winner finish?
70. In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah, with a maximum speed of $183.58 \mathrm{mi} / \mathrm{h}$. The one-way course was 5.00 mi long. Acceleration rates are often described by the time it takes to reach $60.0 \mathrm{mi} / \mathrm{h}$ from rest. If this time was 4.00 s , and Burt accelerated at this rate until he reached his maximum speed, how long did it take Burt to complete the course?
71. (a) A world record was set for the men's 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica. Bolt "coasted" across the finish line with a time of 9.69 s . If we assume that Bolt accelerated for 3.00 s to reach his maximum speed, and maintained that speed for the rest of the race, calculate his maximum speed and his acceleration. (b) During the same Olympics, Bolt also set the world record in the $200-\mathrm{m}$ dash with a time of 19.30 s . Using the same assumptions as for the $100-\mathrm{m}$ dash, what was his maximum speed for this race?

2.7 Falling Objects

Assume air resistance is negligible unless otherwise stated.
72. Calculate the displacement and velocity at times of (a) 0.500 , (b) 1.00 , (c) 1.50 , and (d) 2.00 s for a ball thrown straight up with an initial velocity of $15.0 \mathrm{~m} / \mathrm{s}$. Take the point of release to be $y_{0}=0$.
73. Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00 , (c) 1.50 , (d) 2.00 , and (e) 2.50 s for a rock thrown straight down with an initial velocity of $14.0 \mathrm{~m} / \mathrm{s}$ from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.
74. A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the ground to rise 1.25 m above the floor in an attempt to get the ball?
75. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of $1.40 \mathrm{~m} / \mathrm{s}$ and observes that it takes 1.8 s to
reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.
76. A dolphin in an aquatic show jumps straight up out of the water at a velocity of $13.0 \mathrm{~m} / \mathrm{s}$. (a) List the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known and identify its value. Then identify the unknown, and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long is the dolphin in the air? Neglect any effects due to his size or orientation.
77. A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of $4.00 \mathrm{~m} / \mathrm{s}$, and her takeoff point is 1.80 m above the pool. (a) How long are her feet in the air? (b) What is her highest point above the board? (c) What is her velocity when her feet hit the water?
78. (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of $8.00 \mathrm{~m} / \mathrm{s}$. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?
79. A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of $11.0 \mathrm{~m} / \mathrm{s}$. How long does he have to get out of the way if the shot was released at a height of 2.20 m , and he is 1.80 m tall?
80. You throw a ball straight up with an initial velocity of $15.0 \mathrm{~m} / \mathrm{s}$. It passes a tree branch on the way up at a height of 7.00 m . How much additional time will pass before the ball passes the tree branch on the way back down?
81. A kangaroo can jump over an object 2.50 m high. (a) Calculate its vertical speed when it leaves the ground. (b) How long is it in the air?
82. Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m . He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?
83. An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b) Determine the final velocity at which the object hits the ground. (c) Determine the distance traveled during the last second of motion before hitting the ground.
84. There is a 250 -m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s , how long will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose (neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is $335 \mathrm{~m} / \mathrm{s}$ on this day.
85. A ball is thrown straight up. It passes a $2.00-\mathrm{m}$-high window 7.50 m off the ground on its path up and takes 1.30 s to go past the window. What was the ball's initial velocity?
86. Suppose you drop a rock into a dark well and, using precision equipment, you measure the time for the sound of a splash to return. (a) Neglecting the time required for sound to travel up the well, calculate the distance to the water if the sound returns in 2.0000 s . (b) Now calculate the distance taking into account the time for sound to travel up the well. The speed of sound is $332.00 \mathrm{~m} / \mathrm{s}$ in this well.
87. A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m . (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts $0.0800 \mathrm{~ms}\left(8.00 \times 10^{-5} \mathrm{~s}\right)$. (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?
88. A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at $10.0 \mathrm{~m} / \mathrm{s}$ upward. For the coin, find (a) the maximum
height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground.
89. A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m . (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts $3.50 \mathrm{~ms}\left(3.50 \times 10^{-3} \mathrm{~s}\right)$. (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

2.8 Graphical Analysis of One-Dimensional Motion

Note: There is always uncertainty in numbers taken from graphs. If your answers differ from expected values, examine them to see if they are within data extraction uncertainties estimated by you.
90. (a) By taking the slope of the curve in Figure 2.60, verify that the velocity of the jet car is $115 \mathrm{~m} / \mathrm{s}$ at $t=20 \mathrm{~s}$. (b) By taking the slope of the curve at any point in Figure 2.61, verify that the jet car's acceleration is $5.0 \mathrm{~m} / \mathrm{s}^{2}$.

Figure 2.60

Figure 2.61
91. Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at $t=10.0 \mathrm{~s}$ is $0.208 \mathrm{~m} / \mathrm{s}$. Assume all values are known to 3 significant figures.

Figure 2.62
92. Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at $t=30.0 \mathrm{~s}$ is $0.238 \mathrm{~m} / \mathrm{s}$. Assume all values are known to 3 significant figures.
93. By taking the slope of the curve in Figure 2.63, verify that the acceleration is $3.2 \mathrm{~m} / \mathrm{s}^{2}$ at $t=10 \mathrm{~s}$.

Figure 2.63
94. Construct the displacement graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from $t=0$ to 20 s . You will need to use the information on acceleration and velocity given in the examples for this figure.
95. (a) Take the slope of the curve in Figure 2.64 to find the jogger's velocity at $t=2.5 \mathrm{~s}$. (b) Repeat at 7.5 s . These values must be consistent with the graph in Figure 2.65.

Figure 2.64

Figure 2.65

96. A graph of $v(t)$ is shown for a world-class track sprinter in a 100-m race. (See Figure 2.67). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at $t=5 \mathrm{~s}$? (c) What is his average acceleration between 0 and 4 s ? (d) What is his time for the race?

Figure 2.67
97. Figure 2.68 shows the displacement graph for a particle for 5 s . Draw the corresponding velocity and acceleration graphs.

Figure 2.68

